6 research outputs found

    SECURE REAL-TIME SMART GRID COMMUNICATIONS: A MICROGRID PERSPECTIVE

    Get PDF
    Microgrids are a key component in the evolution of the power grid. Microgrids are required to operate in both grid connected and standalone island mode using local sources of power. A major challenge in implementing microgrids is the communications and control to support transition from grid connected mode and operation in island mode. In this dissertation we propose a distributed control architecture to govern the operation of a microgrid. The func- tional communication requirements of primary, secondary and tertiary microgrid controls are considered. Communication technology media and protocols are laid out and a worst-case availability and latency analysis is provided. Cyber Security challenges to microgrids are ex- amined and we propose a secure communication architecture to support microgrid operation and control. A security model, including network, data, and attack models, is defined and a security protocol to address the real-time communication needs of microgrids is proposed. We propose a novel security protocol that is custom tailored to meet those challenges. The chosen solution is discussed in the context of other security options available in the liter- ature. We build and develop a microgrid co-simulation model of both the power system and communication networks, that is used to simulate the two fundamental microgrid power transition functions - transition from island to grid connected mode, and grid connected to island mode. The proposed distributed control and security architectures are analyzed in terms of performance. We further characterize the response of the power and communication subsystems in emergency situations: forced islanding and forced grid modes. Based on our findings, we generalize the results to the smart grid

    Machine Learning at the Edge: A Data-Driven Architecture with Applications to 5G Cellular Networks

    Full text link
    The fifth generation of cellular networks (5G) will rely on edge cloud deployments to satisfy the ultra-low latency demand of future applications. In this paper, we argue that such deployments can also be used to enable advanced data-driven and Machine Learning (ML) applications in mobile networks. We propose an edge-controller-based architecture for cellular networks and evaluate its performance with real data from hundreds of base stations of a major U.S. operator. In this regard, we will provide insights on how to dynamically cluster and associate base stations and controllers, according to the global mobility patterns of the users. Then, we will describe how the controllers can be used to run ML algorithms to predict the number of users in each base station, and a use case in which these predictions are exploited by a higher-layer application to route vehicular traffic according to network Key Performance Indicators (KPIs). We show that the prediction accuracy improves when based on machine learning algorithms that rely on the controllers' view and, consequently, on the spatial correlation introduced by the user mobility, with respect to when the prediction is based only on the local data of each single base station.Comment: 15 pages, 10 figures, 5 tables. IEEE Transactions on Mobile Computin

    Automatic Evaluation of Information Provider Reliablity and Expertise

    Get PDF
    Q&A social media have gained a lot of attention during the recent years. People rely on these sites to obtain information due to a number of advantages they offer as compared to conventional sources of knowledge (e.g., asynchronous and convenient access). However, for the same question one may find highly contradicting answers, causing an ambiguity with respect to the correct information. This can be attributed to the presence of unreliable and/or non-expert users. These two attributes (reliability and expertise) significantly affect the quality of the answer/information provided. We present a novel approach for estimating these user's characteristics relying on human cognitive traits. In brief, we propose each user to monitor the activity of his peers (on the basis of responses to questions asked by him) and observe their compliance with predefined cognitive models. These observations lead to local assessments that can be further fused to obtain a reliability and expertise consensus for every other user in the social network (SN). For the aggregation part we use subjective logic. To the best of our knowledge this is the first study of this kind in the context of Q&A SNs. Our proposed approach is highly distributed; each user can individually estimate the expertise and the reliability of his peers using his direct interactions with them and our framework. The online SN (OSN), which can be considered as a distributed database, performs continuous data aggregation for users expertise and reliability assesment in order to reach a consensus. In our evaluations, we first emulate a Q&A SN to examine various performance aspects of our algorithm (e.g., convergence time, responsiveness etc.). Our evaluations indicate that it can accurately assess the reliability and the expertise of a user with a small number of samples and can successfully react to the latter's behavior change, provided that the cognitive traits hold in practice. Furthermore, the use of the consensus operator for the aggregation of multiple opinions on a specific user, reduces the uncertainty with regards to the final assessment. However, as real data obtained from Yahoo! Answers imply, the pairwise interactions between specific users are limited. Hence, we consider the aggregate set of questions as posted from the system itself and we assess the expertise and realibility of users based on their response behavior. We observe, that users have different behaviors depending on the level at which we are observing them. In particular, while their activity is focused on a few general categories, yielding them reliable, their microscopic (within general category) activity is highly scattered

    Celotajzivju resursu maksligas atrazosanas un dabisko populaciju saglabasanas zinatniskais pamatojums

    No full text
    Available from Latvian Academic Library / LAL - Latvian Academic LibrarySIGLEMinistry of Agriculture of the Republic of Latvia, Riga (Latvia). National Board of FisheriesLVLatvi

    Integrated simulation and optimization models for tracking international fixed income indices

    No full text
    Portfolio managers in the international fixed income markets must address jointly the interest rate risk in each market and the exchange rate volatility across markets. This paper develops integrated simulation and optimization models that address these issues in a common framework. Monte Carlo simulation procedures generate jointly scenarios of interest and exchange rates and, thereby, scenarios of holding period returns of the available securities. The portfolio manager's risk tolerance is incorporated either through a utility function or a (modified) mean absolute deviation function. The optimization models prescribe asset allocation weights among the different markets and also resolve bond-picking decisions. Therefore several interrelated decisions are cast in a common framework. Two models - an expected utility maximization and a mean absolute deviation minimization - are implemented and tested empirically in tracking a composite index of the international bond markets. Backtesting over the period January 1997 to July 1998 illustrate the efficacy of the optimization models in dealing with uncertainty and tracking effectively the volatile index. Of particular interest is the empirical demostration that the integrative models generate portfolios that dominate the portfolios obtained using classical disintegrated approaches

    Automatic evaluation of information provider reliability and expertise

    Get PDF
    Q&A social media have gained a lot of attention during the recent years. People rely on these sites to obtain information due to a number of advantages they offer as compared to conventional sources of knowledge (e.g., asynchronous and convenient access). However, for the same question one may find highly contradicting answers, causing an ambiguity with respect to the correct information. This can be attributed to the presence of unreliable and/or non-expert users. These two attributes (reliability and expertise) significantly affect the quality of the answer/information provided. We present a novel approach for estimating these user’s characteristics relying on human cognitive traits. In brief, we propose each user to monitor the activity of his peers (on the basis of responses to questions asked by him) and observe their compliance with predefined cognitive models. These observations lead to local assessments that can be further fused to obtain a reliability and expertise consensus for every other user in the social network (SN). For the aggregation part we use subjective logic. To the best of our knowledge this is the first study of this kind in the context of Q&A SNs. Our proposed approach is highly distributed; each user can individually estimate the expertise and the reliability of his peers using his direct interactions with them and our framework. The online SN (OSN), which can be considered as a distributed database, performs continuous data aggregation for users expertise and reliability assesment in order to reach a consensus. In our evaluations, we first emulate a Q&A SN to examine various performance aspects of our algorithm (e.g., convergence time, responsiveness etc.). Our evaluations indicate that it can accurately assess the reliability and the expertise of a user with a small number of samples and can successfully react to the latter’s behavior change, provided that the cognitive traits hold in practice. Furthermore, the use of the consensus operator for the aggregation of multiple opinions on a specific user, reduces the uncertainty with regards to the final assessment. However, as real data obtained from Yahoo! Answers imply, the pairwise interactions between specific users are limited. Hence, we consider the aggregate set of questions as posted from the system itself and we assess the expertise and realibility of users based on their response behavior. We observe, that users have different behaviors depending on the level at which we are observing them. In particular, while their activity is focused on a few general categories, yielding them reliable, their microscopic (within general category) activity is highly scattered
    corecore